Enhancing Accuracy in Brain Susceptibility Mapping with Unrolling Iterations in x-sepnet

Kang-wook Kim¹ ¹Seoul National University

Introduction:

- > x-separation[1] introduces a breakthrough in MRI technology, enabling us to distinguish between paramagnetic and diamagnetic materials in the brain.
- > A limitation of χ -separation is its need for **multiple head orientaions**, leading to increased scan times and operational challenges.
- ≻ Kim et al.[2] recently developed **x-sepnet**, a neural network-based solution for estimating χ_{pos} and χ_{neg} maps from **single orientation**.
- > This paper explores the use of **unrolling iteration** to boost the performance of **x-sepnet**, enhancing its accuracy.

Background:

 $\succ \chi$ -separation utilizes the **local phase**(Δf) and R'_2 brain map as its essential inputs.

Experiments:

- > Our neural network's design draws inspiration from the U-net model used in χ-sepnet[2], incorporating **10 unrolling iterations** during both training and inference phases.
- > We utilize multi-echo GRE and multi-echo SE data acquired from eight healthy subjects (4:1:3 subjects for train:validation:test)
- \geq We benchmark our model against the established χ -sepnet- R₂'[2].

Results:

Output

> The relationship between output and input is represented as follows:

 $\Delta f(\boldsymbol{r}) = D_f(\boldsymbol{r}) * (\chi_{pos}(\boldsymbol{r}) + \chi_{neg}(\boldsymbol{r}))$ $R'_{2}(\boldsymbol{r}) = D_{r,pos} \cdot |\chi_{pos}(\boldsymbol{r})| + D_{r,neg} \cdot |\chi_{neg}(\boldsymbol{r})|$

Methods:

> Since the **physical relationship** between input and output is known, we leverage unrolling iteration to enforce such knowledge into model.

		Xpara	
	NRMSE(\downarrow)	PSNR(个)	SSIM(个)
Baseline <i>x</i> -sepnet-R ₂ '	33.72 ± 2.77	47.45 ± 0.94	0.94322 ± 0.00592
Unrolled <i>x</i> -sepnet- <i>R</i> ₂ '	33.46 ± 2.83	47.52 ± 0.98	0.94307 ± 0.00600
		Xdia	
	NRMSE(\downarrow)	PSNR(个)	SSIM(个)
Baseline <i>x</i> -sepnet-R ₂ '	35.79 ± 2.62	48.17 ± 0.70	0.94179 ± 0.00506
Unrolled <i>x</i> -sepnet- <i>R</i> ₂ '	35.33 ± 2.72	48.28 ± 0.78	0.94246 ± 0.00536

 \succ We can transpose relationship into equation below:

$$y = \Phi x + v$$

, where
$$y = \begin{bmatrix} Sus \\ R_2' \\ \Delta f \end{bmatrix}$$
, $x = \begin{bmatrix} \chi_{pos} \\ \chi_{neg} \end{bmatrix}$, $\Phi = \begin{bmatrix} I & -I \\ I & I \\ F^{-1}DF & -F^{-1}DF \end{bmatrix}$, $v = noise$.

F and D indicate Fourier transform and dipole kernel, respectively.

> By following **unrolling iteration** below, our model predicts (i+1)-th prediction (\hat{x}_{i+1}) enhanced from i-th prediction (\hat{x}_i) :

 $\hat{x}_{i+1} = P_{\theta} \left(\alpha \Phi^H y + (I - \alpha \Phi^H \Phi) \hat{x}_i \right)$

, where P_{θ} indicates the **neural network**.

> Note that initial prediction(\hat{x}_0) is zero for both χ_{pos} and χ_{neg} .

 \succ Our enhanced version, the **unrolled x-sepnet-** R_2 ', demonstrates superior performance over the baseline, achieving higher scores in key metrics: NRMSE, PSNR, and SSIM.

Acknowledgements:

This work is done at Laboratory for Imaging Science and Technology (LIST). The authors would like to thank Minjun Kim and other researchers in LIST for providing beneficial feedback.

References:

[1] Shin, H.-G., Lee, J., Yun, Y. H., Yoo, S. H., Jang, J., Oh, S.-H., Nam, Y., Jung, S., Kim, S., Fukunaga, M., Kim, W., Choi, H. J., & Lee, J. (2021). χ-separation: Magnetic susceptibility source separation toward iron and myelin mapping in the brain. NeuroImage, 240, 118371.

[2] Kim, M., Shin, H. G., Oh, C., Jeong, H., Ji, S., An, H., Kim, J., Jang, J., Bilgic, B., Lee, J. Chi-sepnet: Susceptibility source separation using deep neural network.