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Abstract

Quantitative Susceptibility Mapping (QSM) is an MRI technique that non-invasively maps the

spatial distribution of susceptibility in biological tissues. QSM calculates the susceptibility by com-

bining the effects of paramagnetic substances (e.g., iron) and diamagnetic substances (e.g., myelin)

at each voxel. However, this approach has a limitation in that it cannot predict the individual dis-

tributions of iron and myelin separately.

To overcome this limitation, a method called χ-separation was developed, which separates and

maps the distributions of paramagnetic and diamagnetic substances in the brain into χpos and χneg,

respectively. A limitation of χ-separation is the requirement of multiple head orientation, which in-

creases scan time and poses practical application challenges. Recently, Kim et al. introduced χ-sepnet,

a neural network for estimating χpos and χneg maps from single head orientationdata. χ-sepnet takes

R′
2 and local phase maps obtained from single head orientationas inputs to estimate χpos and χneg

maps.

In this paper, we present a method to improve the performance of χ-sepnet by enforcing physics

through unrolling iterations. We represent the inputs, R′
2 maps and local phase maps, and the sus-

ceptibility map obtained from QSMnet, as a combination of outputs, χpos and χneg, and propose a

model, Unrolled χ-sepnet-R′
2, that enforces this relationship over multiple iterations. We evaluate Un-

rolled χ-sepnet-R′
2 on multi-echo GRE and multi-echo SE data from eight healthy subjects (divided

into 4:1:3 for training, validation, and testing), and confirm that Unrolled χ-sepnet-R′
2 shows better

metrics in NRMSE, PSNR, and SSIM than the baseline χ-sepnet-R′
2. Additionally, we observe that

the iteration-wise outputs of Unrolled χ-sepnet-R′
2 improve iteratively, demonstrating that the model

increasingly predicts more accurate maps through iterations. Meanwhile, in Unrolled χ-sepnet-R′
2, the

underestimation phenomenon becomes more severe in simulated patient test data compared to the

baseline, and further research needs to be conducted to resolve this.
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Chapter 1

Introduction

Quantitative Susceptibility Mapping (QSM)[1] is an MRI technique that non-invasively maps the

spatial distribution of susceptibility in biological tissue. QSM typically computes the susceptibility

by combining the paramagnetic substances (e.g., iron) and diamagnetic substances (e.g., myelin) at

each voxel. However, this computation has the limitation of not being able to separately predict

the distribution of iron and myelin. As a result, while QSM provides useful insights, its utility is

somewhat limited due to this constraint.

To overcome this limitation, a novel method called χ-separation[2] was developed. This method

aims to separately map the distribution of paramagnetic and diamagnetic substances in the brain as

χpos and χneg, respectively. However, χ-separation relies on multiple head orientation, significantly

increasing scan time, thus posing challenges for practical applications. Recently, new approaches have

been proposed to address this issue.

The approach proposed by Kim et al.[3] utilizes a neural network, χ-sepnet, which takes single

head orientation data as input to predict χpos and χneg maps. This network processes the R′
2 and

local phase maps obtained from single head orientation to estimate these distributions. This research

suggests the practical applicability of this method by resolving the scan time issue of χ-separation.

χ-sepnet is constructed with a U-net architecture, leaving room for potential improvements in the

architecture.

In this paper, we apply an unrolling iteration technique to improve the output map accuracy of

the χ-sepnet model. We leverage the physical principles that the input R′
2 and local phase maps and

the susceptibility map obtained from QSMnet can be represented as a combination of χpos and χneg.

This physical relationship is structurally reinforced through multiple iterations, thereby improving the

accuracy of the output maps.
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We evaluate this method using multi-echo GRE and multi-echo SE data from 8 healthy subjects

(4:1:3 subjects for train:validation:test). As a result, we confirm that our model achieves better per-

formance metrics, such as NRMSE, PSNR, and SSIM, compared to the baseline χ-sepnet-R′
2.

The structure of this paper is as follows: Section 2.1 in Chapter 2 provides the background knowl-

edge, including the physical relationship, followed by Section 2.2, where we present our model. In

Section 2.3, we describe the experiments conducted to validate the model, and Section 2.4 interprets

the results. Finally, Chapter 3 concludes the paper.
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Chapter 2

MainContent

2.1 Backgrounds

2.1.1 χ-separation

χ-separationtakes the local phase (∆f) and the R′
2 map obtained from multiple head orientationas

input and estimates the χpos and χneg maps as output. According to previous studies[2], [4], the

following physical relationship exists between these inputs and outputs:

∆f(r) = Df (r) ∗ (χpos(r) + χneg(r)), (2.1)

R′
2(r) = Dr,pos · |χpos(r)|+Dr,neg · |χneg(r)|, (2.2)

where Df represents the dipole kernel for the dipole convolution operation, and Dr denotes a con-

stant value. The values of Dr have been identified in previous studies[2]. However, since the dipole

convolution operation in Equation 2.1 is non-invertible, the output cannot be directly calculated from

the input. Regularization of the data obtained from multiple head orientation scanning is necessary

to estimate the χpos and χneg maps.

2.1.2 χ-sepnet

Obtaining χpos and χneg maps from scanning via multiple head orientation is limited in practical

use due to the excessively long scan time. Kim et al.[3] proposed χ-sepnet, a method that estimates

the χpos and χneg maps using only the scanning data obtained from single head orientation. χ-sepnet

receives the local phase and R′
2 maps as input and predicts the susceptibility (χ) map from the local

phase through QSMnet[5]. The predicted susceptibility map is concatenated with the original two

input maps and fed into the neural network to obtain the χpos and χneg maps. Additionally, Kim
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et al. proposed a variant called χ-sepnet-R∗
2, which uses the R∗

2 map, a relatively easier-to-obtain

map during the scan process, instead of the R′
2 map for prediction. While χ-sepnet-R∗

2 has lower

performance compared to χ-sepnet-R′
2, it is more practical for use.

2.2 Methods

Since the physical relationship between the input and output is known, we leverage unrolling

iteration to enforce this knowledge within the model. Similar to χ-sepnet[2], we incorporate QSMnet[5]

into our model’s process. Our model receives the local phase and R∗
2 map along with the predicted

susceptibility map as input. The susceptibility (χ) is expressed as the sum of χpos and χneg:

χ = χpos(r)− χneg(r). (2.3)

We enforce the physical relationships between the input and output in χ-separation as described by

Equations 2.1, 2.2, and 2.3 through unrolling iteration. These relationships can be summarized as

follows:

y = Φx+ v, (2.4)

where

y =


Sus

R2

∆f

 , x =

χpos

χneg

 , Φ =


I −I

I I

F−1DF −F−1DF

 , v = noise.

Here, F and D represent the Fourier transform and dipole kernel, respectively.

The relationship between input y and output x is described by Equation 2.4, but since some of

the equations are non-invertible, regularization is necessary to compute x from y. Given an arbitrary

prediction x̂ for x, multiple iterations of minimizing y − Φx̂i and regularizing this prediction x̂ can

lead to a solution close to the true value of x. This process is known as unrolling iteration, and the

procedure to predict x̂i+1 from x̂i is described by the following equation:

x̂i+1 = Pθ

(
αΦHy + (I − αΦHΦ)x̂i

)
. (2.5)

Here, Pθ represents the neural network, which regularizes x in the unrolling iteration. Additionally, α

is a learnable parameter that is initialized to 4 based on previous studies[6], and its value is updated

during training.

We propose a model that undergoes the iterative process of Equation 2.5 for a fixed number

of iterations (10) and outputs the final prediction of χpos and χneg maps. We refer to this model

as unrolled χ-sepnet-R′
2. The initial χpos and χneg maps are initialized to zero before the iteration

begins. Figure 2.1 illustrates the overall structure of the unrolled χ-sepnet-R′
2 model.
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Figure 2.1: The overall architecture of our proposed model, Unrolled χ-sepnet-R′
2. In this model, the

input y is a concatenation of R′
2, local phase, and susceptibility map. The neural network is rep-

resented by Pθ, which plays a crucial role in processing the input data. The relationship between

the input and the output map is denoted by Φ, highlighting the model’s ability to map these ele-

ments effectively. Additionally, α represents a learnable parameter within the network, emphasizing

the adaptability and optimization of the model in learning from data.

2.3 Experiments

The design of the proposed neural network is inspired by χ-sepnet[3], leading us to adopt a U-

net architecture. Both in the training and inference phases, the final output is estimated through 10

iterations.

We evaluate our method by comparing the proposed model to the established χ-sepnet-R′
2[3]. For

this evaluation, we utilize multi-echo GRE and multi-echo SE data acquired from 8 healthy subjects

(split as 4:1:3 for training: validation: testing). After training both our model and the baseline for 20

epochs on the training set, we test the models on the test set using the checkpoint with the lowest

validation loss.

2.4 Results

In Section 2.4.1, we present the quantitative results, comparing PSNR and other metrics of our

proposed model, Unrolled χ-sepnet-R′
2, with the baseline. Section 2.4.2 presents the qualitative results,

including susceptibility maps per iteration of the Unrolled χ-sepnet-R′
2 and empirical results.

2.4.1 Quantitative results

The results of the metrics measured on the test set are shown in Table 2.1. Compared to the

baseline χ-sepnet-R′
2[3], our proposed unrolled χ-sepnet-R′

2 demonstrates lower NRMSE and higher

PSNR for both the χpos and χneg maps. In terms of SSIM, the baseline performs slightly better
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χpos

Method NRMSE (↓) PSNR (↑) SSIM (↑)

Baseline χ-sepnet-R′
2[3] 33.72± 2.77 47.45± 0.94 0.94322± 0.00592

Unrolled χ-sepnet-R′
2 33.46± 2.83 47.52± 0.98 0.94307± 0.00600

χneg

Method NRMSE (↓) PSNR (↑) SSIM (↑)

Baseline χ-sepnet-R′
2[3] 35.79± 2.62 48.17± 0.70 0.94179± 0.00506

Unrolled χ-sepnet-R′
2 35.33± 2.72 48.28± 0.78 0.94246± 0.00536

Table 2.1: Comparative analysis of baseline and unrolled χ-sepnet performance: Quantitative evalu-

ation of NRMSE, PSNR, and SSIM metrics for χpos maps (upper section) and χneg maps (lower

section).

for the χpos map, but our unrolled χ-sepnet-R′
2 achieves a higher SSIM for the χneg map. Overall,

our proposed unrolled χ-sepnet-R′
2 outperforms the baseline in terms of NRMSE, PSNR, and SSIM

metrics, indicating that the output map quality of our model is superior.

2.4.2 Qualitative results

To verify that our iterative methods are functioning correctly and that the error decreases with

each iteration, we present the error maps. Figure 2.2 shows the i-th prediction of the unrolled-

χ-sepnet, while 2.3 displays the difference map between the i-th prediction and the ground truth

label. As shown in Figure 2.3, the error between the prediction and the label decreases progressively

with each iteration. Furthermore, Figure 2.2 reveals that during the initial iterations, alternating over-

estimation and underestimation are observed. This indicates that our proposed unrolled-χ-sepnet pro-

duces more accurate output maps as iterations proceed. Additionally, Figure 2.4, which plots the dif-

ference between the i-th and (i+1)-th predictions, shows that as the iterations continue, the changes

between predictions become smaller, eventually stabilizing into a nearly unchanged iterative process

in the later stages.

Furthermore, through conducting several ablation studies, we were able to empirically obtain var-

ious results:

• Increasing the number of iterations improves the metrics. However, this comes with a trade-off

between memory usage and training/inference time.
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• Excluding the use of the QSMnet map (susceptibility map) as input to the network results in

a significant performance drop.

• Across various experimental settings, the value of α converges between 0.67 and 0.75.

• Regardless of changes in neural network architecture or modifications to α, the metric values

eventually saturate at a certain level.

• When performing inference on patient data after training on healthy subjects, the Unrolled-

χ-sepnet exhibits more severe underestimation compared to the existing baseline.

In particular, the underestimation becomes markedly more severe than the baseline, and this issue

will be discussed in detail in the next subsection.

2.4.3 Generalization to patient data

In this experiment, we simulate patient cases by altering the χpos and χneg values of a specific

brain region, obtained from a healthy subject, to fall within abnormal ranges, mimicking hemorrhage

and calcification in that region. The resulting values from that region and the predicted values from

the Unrolled χ-sepnet were plotted, and linear regression was performed on several data points, as

shown in Figure 2.5. Since the neural network, acting as a regularization mechanism, has only seen

normal data during training, it results in underestimation.

Both the Baseline and Unrolled χ-sepnet exhibit underestimation; however, a comparison of their

slopes shows that the Unrolled χ-sepnet has a steeper decline. In other words, underestimation is

more pronounced in the Unrolled χ-sepnet. This is hypothesized to occur because the Unrolled χ-sepnet

passes through the neural network multiple times, compounding the underestimation. Evidence sup-

porting this hypothesis includes experimental results showing that underestimation becomes more se-

vere as the number of iterations increases. However, further research is required to fully validate

this hypothesis. These results indicate that the Unrolled χ-sepnet generalizes worse to patient data

compared to the baseline.
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Figure 2.2: Results across iterations for χpos (upper section) and χneg (lower section).
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Figure 2.3: Error map across Iterations for χpos (upper section) and χneg (lower section).
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Figure 2.4: Difference map from previous iteration for χpos (upper section) and χneg (lower section).
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Figure 2.5: Unrolled χ-sepnet results for simulated hemorrhage cases (upper section) and simulated

calcification cases (lower section).
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Chapter 3

Conclusion

In this paper, we propose the Unrolled χ-sepnet as an improvement over the existing χ-sepnet.

The Unrolled χ-sepnet enforces the physical relationship between the input (local phase, R′
2 map)

and the output (χpos, χneg maps) across multiple unrolling iterations.

According to the results, Unrolled χ-sepnet-R′
2 demonstrated lower NRMSE and higher PSNR in

the χpos and χneg maps compared to the Baseline χ-sepnet-R′
2, and showed superior performance in

the SSIM metric for the χneg map. This indicates that Unrolled χ-sepnet-R′
2 produces higher quality

output maps than the baseline model.

Additionally, the effectiveness of iterative methods was confirmed through the error map, showing

that the error decreases as the number of iterations increases. Initially, both overestimation and un-

derestimation were observed alternately in the early iterations, but as the iterations progressed, the

output maps of the Unrolled-χ-sepnet became increasingly accurate.

However, the Unrolled χ-sepnet showed inferior performance in generalizing to patient data com-

pared to the baseline. Specifically, the underestimation phenomenon was more severe in the Unrolled

χ-sepnet, which is hypothesized to result from compounding underestimation over multiple passes

through the neural network. Further research is necessary to verify this hypothesis.

In summary, while the Unrolled χ-sepnet-R′
2 outperforms the baseline in specific metrics, improve-

ments are still needed in terms of generalization to patient data.
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