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Abstract

Recent spoken dialogue systems leverage large
language models (LLMs) for advanced reason-
ing. However, a mismatch between optimal
textual and verbal delivery limits their effective-
ness in spoken communication. While some ap-
proaches adapt LLMs for speech-friendly out-
puts, their impact on reasoning remains under-
explored. We propose THINK-VERBALIZE-
SPEAK, a framework that separates reason-
ing from spoken delivery to preserve the full
reasoning capacity of LLMs. Central to our
method is verbalizing, an intermediate step
that translates thoughts into natural, speech-
ready text. We also introduce REVERT, a
latency-efficient verbalizer based on incremen-
tal and asynchronous summarization. Experi-
ments across multiple benchmarks show that
our method enhances speech naturalness and
conciseness with minimal impact on reason-
ing. We release both the dataset and pipeline to
support future research.

1 Introduction

Humans inherently differentiate between what to
think internally and what to say externally. That
is, individuals can easily reformulate their thought
processes into a structure that is more appropriate
for verbal communication (Levelt, 1993; Indefrey
and Levelt, 2004; Sahin et al., 2009). However, cur-
rent spoken dialogue systems do not incorporate
mechanisms that emulate this process. This limita-
tion is significant given the increasing popularity of
reasoning models that often produce a long chain-
of-thought to address complex problems (Wei et al.,
2022; OpenAI, 2024; Guo et al., 2025).

Current spoken dialogue systems typically em-
ploy a two-stage framework, herein referred to as
the THINK-SPEAK framework (Ji et al., 2024; Don-
gre et al., 2024; Xu et al., 2025; Fang et al., 2025).
In this approach, the system first constructs the

*Equal contribution.

Question: Every day, Wendi feeds each of her chickens
three cups of mixed chicken feed, [...] How many cups of
feed does she need to give her chickens in the final meal
of the day if the size of Wendi's flock is 20 chickens?

Think (CoT): To
determine how many cups
of [...], we can follow
these steps:

Step 1: [...] 3 * 20 = 60

Step 2: [...] 

Step 4: [...] 60 - 40 = 20

Therefore, Wendi needs
to give her chickens
\boxed{20} cups of feed
in the final meal. 

Verbalize

Accurate
Unsuitable for speech

Accurate
Speech-suitable

Think (speech-friendly): Wendi gives 15 cups in the
morning and 25 cups in the afternoon, totaling 40
cups so far. Since she has 20 chickens, each chicken
needs 2 cups per day. To reach 40 cups for the day,
she needs to give 10 more cups in the final meal.

Speech-suitable but Inaccurate 

So, Wendi needs to give
her chickens 20 cups of
feed in the final meal.

Wendi gives her chickens
three cups of feed each
day. That adds up to 60
cups for all the chickens.

She gives them 15 cups
in the morning and 25
cups in the afternoon.

If we take 40 cups away
from 60, we get 20 cups
left for the evening meal.

Speak

Figure 1: To produce both speech-friendly and accu-
rate responses, we decouple thinking from verbalizing.
A chain-of-thought process (verbose, structured, or in
technical formats such as LaTeX) is unsuitable for spo-
ken delivery, Conversely, generating a speech-friendly
answer without underlying reasoning may be fast but
often results in inaccurate responses. Moreover, waiting
for the thinking to complete leads to severe latency. By
verbalizing internal thoughts incrementally, we achieve
accuracy, speech-suitability, and low latency.

content of the speech (THINK), and then generates
the corresponding spoken output (SPEAK). How-
ever, large language models (LLMs), which are
commonly used in the THINK stage, combined
with test-time computing methods, such as chain-
of-thought reasoning, often yield responses that
are not suitable for spoken dialogue. Some stud-
ies (Cho et al., 2024; Hyeon et al., 2025) attempt to
address this issue by guiding the model to produce
speech-friendly outputs, either through fine-tuning
or prompting. Nevertheless, enforcing a speech-
friendly thought format may substantially deterio-
rate the performance of reasoning processes. An



illustrative example is provided in Figure 1.
In this work, we propose the THINK-

VERBALIZE-SPEAK framework, which introduces
an intermediate verbalization stage to translate raw
model reasoning into speech-friendly, comprehen-
sible utterances. By employing a dedicated ver-
balization model—while keeping the reasoning
model fixed—our system produces natural, concise
speech output without sacrificing problem-solving
capabilities. To address the latency incurred by a
naive two-stage implementation, we present the
REasoning to VERbal Text (REVERT) model,
which enables efficient, incremental verbalization
and reduces response time by up to 66% compared
to sequential approaches. Extensive automatic and
human evaluations confirm that our method gen-
erates speech output that is both natural and accu-
rate, with minimal loss in reasoning performance,
maintaining robust performance even with smaller
verbalization models.

Our key contributions to the field are as follows:

• We introduce the THINK-VERBALIZE-SPEAK

framework, which enhances the speech-
friendliness of generated utterances while pre-
serving the problem-solving capabilities of
the underlying reasoning model.

• We propose REVERT, a latency-efficient ver-
balization model that significantly reduces sys-
tem latency by initiating verbal output before
the underlying reasoning process is complete.

• We develop the solve-summarize-scatter data
pipeline, which produces reasoning data with
incremental speech-friendly summaries from
QA datasets. We publicly release the dataset
used to train the REVERT model.

2 Related Work

Reasoning in LLMs While LLMs have achieved
significant progress through scaling model and
dataset sizes, these advancements alone remain
insufficient for addressing complex tasks such as
arithmetic and commonsense reasoning (Cobbe
et al., 2021; Ho et al., 2020; Wang et al.,
2024a,c). The introduction of chain-of-thought
(CoT) prompting (Wei et al., 2022) has enabled
LLMs to demonstrate enhanced reasoning abilities.
The models specialized in reasoning incorporate
non-linear processes such as reflection and back-
tracking. However, these enhanced reasoning pro-
cesses are lengthy and verbose, making it difficult

for users to follow in real time or stay engaged
during spoken interactions.

Spoken Dialogue Systems Spoken dialogue sys-
tems are typically categorized as cascaded or end-
to-end (Ji et al., 2024). Cascaded systems employ a
pipeline architecture comprising automatic speech
recognition (ASR), a dialogue model, and a text-to-
speech (TTS) component, using text as the interme-
diate representation. This modular approach allows
for the integration of state-of-the-art components at
each stage. However, LLM-based dialogue models
within these systems often produce outputs opti-
mized for reading—such as bullet points, sentence
fragments, or formatted equations—rather than for
spoken communication, which can undermine the
naturalness of speech-based interactions.

End-to-end systems eliminate the dependency
on intermediate text, thereby preserving paralin-
guistic cues and facilitating more natural speech
generation. Recent work includes fully textless
models (Lakhotia et al., 2021; Zhang et al., 2023;
Défossez et al., 2024), text-speech interleaved ar-
chitectures (Zeng et al., 2024; Wang et al., 2024b),
and parallel decoding approaches (Xie and Wu,
2024; Gao et al., 2025; Xu et al., 2025). While
end-to-end systems are more effective at generat-
ing speech-friendly outputs, they typically exhibit
weaker reasoning capabilities compared to conven-
tional LLMs.

Speech-Suitable Text Generation Recent work
on speech-suitable text can be divided into two
main perspectives. The first is normalization,
which converts input text into a form suitable
for direct spoken delivery. For example, Math-
Reader (Hyeon et al., 2025) translates LaTeX math-
ematical expressions into English, enabling spo-
ken rendering crucial as LLMs often output LaTeX
when solving arithmetic problems. Beyond nor-
malization, a second perspective considers how
content should be verbalized for effective spoken
communication. As discussed by Cho et al. (2024),
"speechworthiness" refers to properties that make
text well-suited for spoken presentation, including
clarity, utterance length, and information density.
Additionally, unlike text, audio requires listeners to
engage with the content sequentially, without the
ability to selectively skip sections.
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Figure 2: Overall framework of THINK-VERBALIZE-SPEAK. For a given user query, (1) a reasoning LLM generates
a step-by-step chain-of-thoughts in text. (2) The REVERT model verbalizes the intermediate reasoning outputs
into speech-friendly text incrementally, reducing the latency. (3) A TTS model converts the verbalized text into
synthesized speech output in a streaming manner. REVERT model operates in two modes: thinking mode (ST ),
where it receives and accumulates reasoning chunks, and verbalizing mode (SV ), where it translates accumulated
reasoning into speech-friendly text. Please refer to § 3.2 for the usage of special tokens ⟨bov⟩, ⟨con⟩, and ⟨eov⟩.

3 THINK-VERBALIZE-SPEAK

Our framework, THINK-VERBALIZE-SPEAK,
modifies the traditional cascaded system by gener-
ating response content in two stages; a reasoning
stage ensures response accuracy (THINK) and a
translation stage converts the reasoning into a ver-
bal response (VERBALIZE). The resulting response
is then synthesized into speech (SPEAK). Figure
2 provides an overview of our approach utilizing
REVERT as the verbalizer. We employ an off-the-
shelf reasoning LLM and a streaming TTS model,
both of which remain frozen; only the REVERT
model undergoes training under our framework.

3.1 THINK

In the THINK stage, we leverage the problem-
solving abilities of a reasoning LLM. Upon receiv-
ing a user query, the LLM solves the query using
chain-of-thought reasoning. The reasoning output
is then streamed to the subsequent stage.

3.2 VERBALIZE

In the VERBALIZE stage, the system receives the
streaming reasoning output from the THINK stage
and translates it into speech-friendly utterances. A

naive method is the sequential approach, in which
the system completes the reasoning stage before
generating speech-friendly translations of the out-
put. However, this causes significant latency.

To address this issue, we propose REVERT, a
latency-efficient verbalizer. As described in Al-
gorithm 1, the REVERT model operates asyn-
chronously with the reasoning LLM from the
THINK stage, incrementally generating speech-
friendly utterances based on partial reasoning out-
puts.

The REVERT model operates in two distinct
modes: thinking mode (ST ) and verbalizing mode
(SV ). In thinking mode, REVERT receives and pro-
cesses the outputs of the reasoning model. While
the reasoning LLM emits output token by token,
REVERT processes these outputs in segments, de-
fined by a predetermined set of delimiters. This
chunk-based processing enables more efficient
computation through hardware parallelism.

After processing each segment, REVERT deter-
mines whether to initiate verbalization via single
token generation. If the next token is ⟨con⟩, RE-
VERT continues processing additional reasoning
segments. If the next token is ⟨bov⟩, the model
transitions to verbalizing mode, where REVERT



Algorithm 1 THINK-VERBALIZE-SPEAK with REVERT

Require: a trained REVERT pθ , a reasoning model q, user
query tokensQ, a set of delimiters D.

1: function THINK (q,Q)
2: initialize i← 0
3: repeat
4: generate ri ∼ q(· | Q, r<i)
5: send ri to the verbalizer
6: i← i+ 1
7: until ri−1 = ⟨eos⟩
8: end function
9: function VERBALIZE (pθ,Q)

10: set the current state S as thinking mode ST
11: initialize a context C ← Q
12: while reasoning is not complete do
13: receive texts from the reasoning model.
14: process these texts into segmentR with D.
15: if S is in thinking mode (ST ) then
16: update C ← (C,R).
17: sample s ∼ pθ(· | C) ▷ ⟨con⟩ or ⟨bov⟩
18: if s = ⟨bov⟩ then
19: transition state S to verbalizing mode.
20: end if
21: end if
22: if S is in verbalizing mode (SV ) then
23: update C ← (C, ⟨bov⟩) ▷ Begin verbalization
24: initialize the verbalization buffer V ← ().
25: repeat
26: generate v ∼ pθ(· | C).
27: update context: C ← (C, v).
28: V ← (V, v)
29: until v = ⟨eov⟩ ▷ End of verbalization
30: transition state S to thinking mode.
31: send V to the TTS model.
32: end if
33: end while
34: end function

translates the accumulated reasoning segments into
speech-friendly output tokens. The model contin-
ues generating verbalized text until it produces the
⟨eov⟩ token, at which point it forwards the gener-
ated text to the subsequent stage, returns to thinking
mode, and resumes processing reasoning segments.
The state diagram of REVERT is included in Fig-
ure 2.

In summary, REVERT functions as an incremen-
tal, asynchronous, speech-oriented summarizer of
the reasoning output. Since REVERT performs no
reasoning itself, it can be implemented as a more
compact model compared to the reasoning LLM.

3.3 SPEAK

In the SPEAK stage, we convert the utterances to
speech using a TTS model. Specifically, we adopt a
TTS model that supports both streaming input and
output, allowing the system to process streaming
outputs from the VERBALIZE stage and play the
generated speech with minimal delay for the user.

3.4 REVERT Training

Since the reasoning LLM and streaming TTS mod-
els remain frozen, we describe only the training pro-
cedure for the REVERT model. We below discuss
the training data format, the dataset construction
pipeline, and the training objective.

Training Data Each training example comprises
a user query Q and the corresponding response X .
Since REVERT performs incremental summariza-
tion of reasoning steps, the training data must be
structured such that summaries are interleaved with
their respective reasoning segments. Formally, X
is represented as

X =
[
X1, . . .Xn

]
(1)

Xk =
[
Rk ⟨bov⟩ Vk ⟨eov⟩

]
, (2)

where Rk is the segments of the k-th reason-
ing step, and Vk is the verbalized text, enclosed
by ⟨bov⟩ and ⟨eov⟩ tokens, as a speech-friendly
summary of Rk. Sometimes, Rk consists of
multiple reasoning segments, denoted as Rk =
[R1

k, . . . ,R
mk
k ], where each segment is separated

by delimiters D (i.e., \n), and mk indicates the
total number of segments.

Dataset Construction Pipeline Because no pub-
licly available datasets conform to the required for-
mat, we propose a simple LLM-based pipeline to
generate a dataset in our desired format with a stan-
dard QA dataset as input. Figure 3 presents an
overview of the proposed pipeline. The pipeline
consists of three steps: solve, summarize, and scat-
ter. In the solve step, the reasoning LLM solves the
user query using a standard chain-of-thought. In
the summarize step, we generate a speech-friendly
summary for the generated reasoning output. In
the scatter step, we scatter the summaries across
the reasoning process such that each summary ap-
pears immediately after its associated reasoning
step, along with ⟨bov⟩ and ⟨eov⟩ tokens. We use
the output of the scatter step as the training data.
For all three steps, we employ gpt-4.1-mini-2025-
04-11 as the processing model. More detailed pro-
cedures and prompts are provided in Appendix A.

Objective The training procedure for REVERT
closely follows standard LLM finetuning. We begin
by initializing REVERT with a pretrained LLM
and finetune it using cross-entropy loss on the next-
token prediction task, applied selectively to the
training data described above. Importantly, since



To determine if the directors of Parasite and Oppenheimer are from the
same country, we need to identify the directors and their countries of origin.
1. Identify the director of Parasite: The director of Parasite is Bong Joon-
ho, a South Korean film director
2. Identify the director of Oppenheimer: The director of Oppenheimer is
Christopher Nolan, a British-American film director.
3. Determine the countries of origin: Bong Joon-ho is from South Korea,
while Christopher Nolan is from the United Kingdom (British) and also
holds American citizenship.
4. Compare the countries of origin: Since Bong Joon-ho is from South
Korea and Christopher Nolan is from the United Kingdom (and also holds
American citizenship), they are not from the same country.
Therefore, the directors of Parasite and Oppenheimer are not from the same
country.

The director of Parasite is Bong Joon-ho from South Korea. The director
of Oppenheimer is Christopher Nolan, who is British and also holds
American citizenship. Since they are from different countries, the directors
of Parasite and Oppenheimer are not from the same country.

To determine if the directors of Parasite and Oppenheimer are from the same
country, we need to identify the directors and their countries of origin.
1. Identify the director of Parasite: The director of Parasite is Bong Joon-ho, a South
Korean film director
bov  The director of Parasite is Bong Joon-ho from South Korea.  eov

2. Identify the director of Oppenheimer: The director of Oppenheimer is Christopher
Nolan, a British-American film director.
3. Determine the countries of origin: Bong Joon-ho is from South Korea, while
Christopher Nolan is from the United Kingdom (British) and also holds American
citizenship.
bov  The director of Oppenheimer is Christopher Nolan, who is British and also

holds American citizenship.  eov
4. Compare the countries of origin: Since Bong Joon-ho is from South Korea and
Christopher Nolan is from the United Kingdom (and also holds American
citizenship), they are not from the same country.
Therefore, the directors of Parasite and Oppenheimer are not from the same country.
bov  Since they are from different countries, the directors

of Parasite and Oppenheimer are not from the same country. eov

 1. Solve

 2. Summarize

 3. Scatter

Q. Are the director of Parasite and the director of Oppenheimer from the same country?

Figure 3: Data construction pipeline for training REVERT. Starting from a question, (1) Solve: we first generate a
step-by-step reasoning process to derive the answer. (2) Summarize: we summarize key parts of the reasoning
as speech-friendly utterances. (3) Scatter: we insert each utterance right after the reasoning segment it reflects,
producing a sequence where internal reasoning and verbal explanations are interleaved.

REVERT is not required to perform the reasoning
process itself, we compute the loss only within
the verbalization segments of each sequence. For
positions outside these verbalization segments, the
model is trained to predict a special ⟨con⟩ token,
signaling that it is still in the reasoning phase.

Formally, let IVERBAL denote the set of token
positions within verbalization segments, the set
of token positions spanning from ⟨bov⟩ to ⟨eov⟩,
inclusive. Conversely, let ITHINK represent the set
of token positions outside IVERBAL, corresponding
to the tokens used for LLM reasoning. The total
loss is:

L(θ) =−
∑

i∈IVERBAL

log pθ(xi | Q, x<i) (3)

−
∑

i∈ITHINK

log pθ(⟨con⟩ | Q, x<i). (4)

Here, xi is the i-th token in the response sequence
X , and pθ is the model’s output probability.

4 Experiments

We evaluate the effectiveness of our THINK-
VERBALIZE-SPEAK framework and the verbalizer
model across multiple experimental settings. Addi-
tional details are provided in Appendix B.2.

4.1 Models
We evaluate two versions of THINK-VERBALIZE-
SPEAK: (1) TVS+SEQ, which performs reason-
ing followed by verbalization sequentially; and (2)

TVS+REVERT, in which the REVERT model in-
crementally verbalizes the reasoning outputs.

For comparison, we include several baselines
based on the two-stage framework: (1) Chain-of-
Thought (CoT) employs a standard zero-shot chain-
of-thought prompting technique to elicit step-by-
step reasoning. (2) Speech-Friendly Prompting
(SFP) applies prompting strategies to encourage
the model to generate concise, speech-appropriate
outputs, following the guidelines established by
Cho et al. (2024). (3) Speech-Friendly Finetun-
ing (SFF) uses a finetuned model to directly pro-
duce speech-friendly responses. For finetuning, we
use the same dataset as our model, but replace the
output of the scatter step with that of the summa-
rize step. Additionally, we include Qwen2.5-Omni-
7B (Xu et al., 2025), an end-to-end spoken dialogue
system finetuned to produce speech-friendly out-
puts, as a baseline for comparative analysis.

For the think model, we experiment with multi-
ple LLMs, specifically Qwen2.5-7B-Instruct (Yang
et al., 2024), Llama-3.1-8B-Instruct (Grattafiori
et al., 2024), and gpt-4o-mini-2024-07-18 (Ope-
nAI et al., 2024). For SEQ and REVERT model,
we use Qwen2.5-3B-Instruct (Yang et al., 2024) as
the base model and fine-tune it. For all models ex-
cept Qwen2.5-Omni-7B, we employ gpt-4o-mini-
tts (OpenAI, 2025) as the speak model to convert
textual responses into speech.



4.2 Datasets

We consider the following three datasets for our
evaluation setup: (1) GSM8K (Cobbe et al., 2021)
focuses on arithmetic reasoning, based on grade-
school level math problems. The solutions are gen-
erally straightforward and linear, involving simple,
easy-to-follow steps without complex mathemat-
ical elements. (2) 2WikiMultiHopQA (Ho et al.,
2020) requires multi-hop retrieval of Wikipedia
documents to answer a question. While the dataset
is not primarily designed to assess complex rea-
soning, multi-hop QA in a closed-book setting
demands step-by-step reasoning abilities. (3)
SciBench (Wang et al., 2024a) assesses college-
level scientific problem-solving abilities. The so-
lutions are often involve complex equations, for-
mulas, and other components that are not easily
communicated verbally.

We construct the training set of REVERT as a
subset of examples from the GSM8K and 2Wiki-
MultiHopQA training sets. SciBench remains un-
seen during training and serves to evaluate the
model’s out-of-domain generalization capability.

4.3 Evaluation Procedure and Measures

Automatic Reasoning Evaluation We evaluate
the reasoning capabilities of dialogue systems.
Each system generates responses to the provided
questions, and we assess the correctness of the final
outputs using an LLM-as-a-judge framework. We
report the accuracy for this evaluation.

Automatic Speech-Friendliness Evaluation We
evaluate whether the responses from each system
are suitable for verbal delivery. We adopt the four
metrics also used by Cho et al. (2024). (1) Word
count (WC) measures the overall conciseness of
the response and is computed using simple whites-
pace delimitation. (2) Flesch Reading Ease (FRE)
score assesses text readability based on the num-
ber of syllables per word and words per sentence.
Although not directly related to speech, the FRE
score is correlated with listenability. (3) Depen-
dency depth (DD) is the maximum depth of the
response dependency tree computed by Spacy de-
pendency parser1. DD helps assess the sentence
complexity. (4) Nonvocalizable character count
(NV) evaluates the appropriateness of the response
for verbal delivery by identifying the presence of
nonvocalizable content.

1https://spacy.io/api/dependencyparser

Criteria

Naturalness: Whether the response sounds like some-
thing a human would naturally say in conversation.

Conciseness: Whether the response delivers essential
information without unnecessary verbosity.

Understandability: How easily the response can be com-
prehended when spoken aloud.

Overall Quality: Overall impression of the response’s
quality and suitability for spoken delivery.

Table 1: Criteria for human evaluation of spoken re-
sponses. More details are in Appendix C.

REVERT Latency Evaluation We measure the
time-to-response of THINK-VERBALIZE-SPEAK

and evaluate the effectiveness of REVERT in re-
ducing latency. Since we use a streaming TTS
model, we focus on the time required to generate
the first spoken output. Specifically, (T1) the time
taken for the system to enter the verbalizing mode
after receiving the user’s query, and (T2) the addi-
tional time required to produce the first verbalized
segment after verbalization has started. We report
latencies at the 50th percentile with Qwen2.5-3B-
Instruct as the verbalizer. All experiments are con-
ducted on the GSM8K dataset using the PyTorch
transformers library with bfloat16 precision on
an NVIDIA A6000 GPU.

Human Evaluation We conduct a human evalu-
ation in which annotators on Amazon Mechanical
Turk rate system responses on a 5-point Likert scale
according to four criteria: naturalness, conciseness,
understandability, and overall quality. Table 1 pro-
vides definitions for each criterion. We randomly
sample 60 examples, 20 from each dataset, and col-
lect annotations from three independent raters per
example. Unlike previous evaluations that rely on
textual assessment, this evaluation is speech-based.

5 Results and Discussion

5.1 Does speech-friendliness compromise
models’ reasoning capabilities?

Table 2 presents the results of the automatic evalu-
ations for the THINK-VERBALIZE-SPEAK model
and the baseline systems. In most cases, the chain-
of-thought strategy achieves the highest reasoning
benchmark accuracies within each THINK model
category, but demonstrates the lowest performance
in speech-suitability evaluations. This indicates
that the chain-of-thought strategy exhibits highly
polarized performance with respect to reasoning

https://spacy.io/api/dependencyparser


(a) Accuracy (%) (b) Speech-suitability (c) Latency (s)

Models GSM8K 2MHQA SciBench WC(↓) FRE(↑) DD(↓) NV(↓) T1 T2

Qwen2.5-Omni-7B 84.53 14.30 20.95 101.7 90.90 5.24 0.78 - -

Qwen2.5-7B-Instruct

Chain-of-Thought 92.72 30.00 50.72 153.5 69.22 6.23 67.11 0.0 0.64
Speech-Friendly Prompting 87.57 26.60 45.09 87.11 84.97 5.45 11.04 0.0 0.46
Speech-Friendly Finetuning 68.69 32.70 21.97 44.90 88.32 4.28 0.035 0.0 0.47

TVS (SEQ) 93.18 29.75 47.40 42.15 88.71 4.23 0.005 8.08 0.43
TVS (REVERT) 92.65 30.00 47.25 44.02 88.40 4.21 0.024 2.72 0.45

Llama-3.1-8B-Instruct

Chain-of-Thought 85.44 17.95 28.32 194.5 69.86 6.42 9.079 0.0 0.77
Speech-Friendly Prompting 83.70 16.45 22.83 101.7 87.99 5.33 2.887 0.0 0.34
Speech-Friendly Finetuning 65.13 42.50 14.02 48.05 88.43 4.25 0.034 0.0 0.35

TVS (SEQ) 85.44 22.25 26.01 43.94 88.72 4.27 0.026 7.19 0.44
TVS (REVERT) 85.29 19.10 27.80 44.95 88.89 4.20 0.043 2.67 0.44

gpt-4o-mini-2024-07-18

Chain-of-Thought 94.84 39.60 55.64 175.4 67.40 6.37 74.69 - -
Speech-Friendly Prompting 87.26 34.40 34.54 73.09 82.45 5.14 0.215 - -

TVS (SEQ) 94.77 39.75 53.26 43.83 88.48 4.27 0.008 - -
TVS (REVERT) 94.69 39.55 53.32 45.92 88.39 4.25 0.019 - -

Table 2: Main results comparing different baselines and our proposed method (TVS (SEQ) or (REVERT) ) across
three base THINK models. We report (a) task accuracy on GSM8K, 2WikiMultiHopQA, and SciBench; (b) speech-
suitability scores using word count (WC), Flesch Reading Ease (FRE), dependency depth (DD), and number of
non-vocal characters (NV); and (c) generation latency (T1, T2) at the 50th percentile. Speech-suitability scores
and latencies are computed on the GSM8K test set. By decoupling thinking and verbalizing (TVS), we preserve
reasoning capabilities while enhancing speech-friendliness. Furthermore, the introduction of the REVERT model
significantly reduces latency. Results on other datasets are presented in Appendix D.

capabilities and speech-friendliness.

Therefore, we apply the two most widely used
solutions to these issues: prompting and finetun-
ing. While the speech-friendly prompting yields
only a minimal decrease in reasoning benchmark
accuracies, it resorts to chain-of-thought reason-
ing when faced with challenging questions, which
in turn harms its speech-suitability scores. An
example in Table 8 and human evaluation in Ta-
ble 3 reveal similar issues. Despite receiving the
highest overall scores on 2WikiMultiHopQA, its
scores, especially the conciseness score, drop sig-
nificantly on GSM8K and SciBench. Qwen2.5-
Omni-7B also exhibits a similar trend, where its
speech-friendliness diminishes with rising problem
difficulty.

In contrast, the speech-friendly finetuning sys-
tem receives high speech-friendliness scores but
low reasoning benchmark scores. In other words, it
yields highly intelligible responses but not intelli-
gent ones. Notably, the system achieves the highest
scores on the 2WikiMultiHopQA dataset. We at-
tribute this to the model acquiring additional knowl-
edge during training, as the dataset does not strictly
separate train set and development set knowledge
bases. Therefore, the high score is likely unrelated
to the system’s reasoning capabilities.

These findings highlight a fundamental trade-
off within the two-stage paradigm: optimizing
for reasoning capability tends to degrade speech-
suitability, and vice versa.

5.2 How does the explicit verbalization stage
affect performance?

While this framework, by design, should mirror the
accuracy scores of the THINK model’s chain-of-
thought strategy, we observe a slight decrease in
accuracy on the SciBench dataset. We attribute this
to two possible factors: (1) out-of-domain charac-
teristics and (2) inherent task difficulty. However,
even with the drop in accuracy, both versions of
our framework vastly outperform other baselines.

We also observe an anomalous result on the
2WikiMultiHopQA dataset for the Llama-3.1-8B-
Instruct think model, where both the SEQ and RE-
VERT variants outperform the chain-of-thought
strategy. We attribute this to the same factor identi-
fied in the speech-friendly finetuning strategy issue,
as all three systems share the same target text in
the training data.

For speech-suitability measures, both SEQ and
REVERT outperform all other baselines in auto-
matic evaluation. In human evaluation, we analyze
the results for each dataset. On 2WikiMultiHopQA,



GSM8K 2WikiMultiHopQA SciBench

Method Natu. Conc. Unde. Over. Natu. Conc. Unde. Over. Natu. Conc. Unde. Over.

CoT 4.55±0.09 3.72±0.11 4.48±0.09 4.28±0.09 3.92±0.16 2.92±0.18 4.40±0.11 3.53±0.15 4.25±0.12 3.10±0.16 3.75±0.12 4.08±0.10

SFP 4.32±0.12 3.67±0.15 4.52±0.12 4.17±0.12 4.47±0.10 4.23±0.12 4.65±0.08 4.35±0.10 4.20±0.11 3.02±0.18 3.90±0.11 4.03±0.09

SFF 4.62±0.09 4.33±0.11 4.52±0.10 4.33±0.10 4.47±0.12 4.17±0.13 4.60±0.10 4.32±0.12 4.23±0.15 4.00±0.12 3.80±0.12 4.10±0.10

Qwen2.5-Omni-7B 3.40±0.14 3.50±0.14 3.72±0.15 3.50±0.14 4.03±0.14 4.18±0.10 4.47±0.10 4.10±0.11 4.00±0.16 3.48±0.15 3.70±0.14 3.93±0.14

TVS (SEQ) 4.62±0.09 4.40±0.10 4.55±0.09 4.37±0.09 4.35±0.12 4.10±0.11 4.58±0.10 4.33±0.10 4.40±0.10 4.02±0.11 3.82±0.13 4.28±0.09

TVS (REVERT) 4.58±0.10 4.45±0.11 4.23±0.13 4.23±0.12 4.39±0.13 4.21±0.13 4.63±0.10 4.18±0.11 4.45±0.09 4.07±0.12 3.87±0.14 4.28±0.09

Table 3: Human-annotated scores on spoken responses. "Natu.", "Conc.", "Unde.", and "Over." denote Naturalness,
Conciseness, Understandability, and Overall Quality, respectively. Each score represents the mean and standard
error of a 5-point Likert rating across three datasets. Bold indicates the highest score in each column, and underline
indicates the lowest.

all systems score highly. In GSM8K and SciBench,
all models lose points in conciseness and under-
standability. Regardless, SEQ and REVERT remain
the top two models in terms of naturalness, con-
ciseness, and overall quality.

In summary, the introduction of the VERBAL-
IZE stage in THINK-VERBALIZE-SPEAK enables
exceptional speech-friendliness with minimal com-
promise in the reasoning capabilities of the THINK

model.

5.3 When should I use REVERT over SEQ?

As stated in Section 5.2, both SEQ and REVERT
perform well across different datasets, with mini-
mal differences in their effectiveness as verbalizers.
The primary distinction between the two models
lies in their latency. Specifically, SEQ waits for
the reasoning process to complete before verbaliza-
tions, which requires approximately 8.08 seconds,
as shown in Table 2(c). Such latency is unsuitable
for real-time spoken conversation settings.

Conversely, REVERT incrementally processes
verbalizable segments before the reasoning pro-
cess is complete, receiving the first segment in
an average of 2.72 seconds, a 66% reduction in
latency compared to SEQ. In voice-interface con-
versations, this latency can be effectively masked
by brief filler phrases such as “Let me think,” mak-
ing it acceptable for real-time applications. There-
fore, REVERT achieves performance comparable
to SEQ while significantly reducing latency, sug-
gesting that REVERT is preferable for most real-
time applications.

5.4 Does size matter?

We discuss the effect of the size of the REVERT
model on its performance. Table 4 illustrates the
performance of three differently sized REVERT
models: Qwen2.5-0.5B-Instruct, Qwen2.5-1.5B-

REVERT size Accuracy (%) Speech-suitability

GSM8K SciBench WC (↓) FRE (↑)

7B 92.7 50.7 – –

3B 92.7 47.3 44.0 88.4
1.5B 92.7 46.8 45.3 88.9
0.5B 91.4 42.1 44.2 88.6

Table 4: Comparison of verbalization abilities across dif-
ferent REVERT model sizes. Speech-suitability scores
are calculated on GSM8K.

Instruct, and Qwen2.5-3B-Instruct. The results
indicate that the performance loss from decreasing
model size is more pronounced for SciBench than
for GSM8K, likely due to differences in task dif-
ficulty between the datasets. Notably, the speech
suitability scores remain stable despite reductions
in model size.

In conclusion, although model size affects RE-
VERT’s performance, the degradation is not sub-
stantial. This suggests that smaller REVERT mod-
els remain a viable option in low-resource settings.

6 Conclusion

In this work, we address a critical gap between rea-
soning capability and speech-friendliness in spo-
ken dialogue systems. We present the THINK-
VERBALIZE-SPEAK framework, which decouples
reasoning from verbalization to achieve both ac-
curacy and naturalness in speech. Extensive auto-
matic and human evaluations show that our frame-
work enhances speech suitability with minimal
compromise of reasoning capability across most
benchmarks. Additionally, we introduce the RE-
VERT model for incremental verbalization, which
reduces latency compared to the sequential ap-
proach. Although our focus is on single-turn con-
versations, extending the framework to multi-turn
or full-duplex interactions presents a promising av-
enue for future research.



7 Limitations

While our framework shows promising results, it
has several limitations. First, it focuses on single-
turn conversational settings and does not support
multi-turn or full-duplex interactions, where rea-
soning and verbalization may need to occur in par-
allel with multiple user interactions. Extending
the framework to handle such interactive scenar-
ios remains an important direction for future work.
Second, the current verbalization model does not
provide control over the level of explanation de-
tail. Supporting adjustable granularity—from brief
summaries to step-by-step explanations—could im-
prove adaptability to different user needs. Third,
our work focuses on chain-of-thought reasoning,
but extending it to other test-time computation
methods with intermediate traces, such as multi-
step retrieval or tool use, could broaden its applica-
bility.

8 Potential Risks

Our framework introduces no additional epistemic
or safety risks beyond those already present in the
underlying reasoning model. This is because the
verbalization model is designed solely to rephrase
the outputs of a frozen, pretrained reasoning LLM
into speech-friendly language without altering their
content or logic. It performs no independent reason-
ing, decision-making, or content generation beyond
linguistic reformulation. Consequently, factual in-
accuracies, biases, or harmful outputs originate en-
tirely from the reasoning model. The verbalization
stage merely translates those outputs into a form
more suitable for spoken communication. Thus,
the overall risk profile of the system is bounded
by that of the underlying reasoning model, and our
model introduces no novel vulnerabilities.
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A Details of dataset

This section provides a detailed procedure on how
our training dataset was generated. First, we
source a set of raw question-answer pairs from
the GSM8K and 2WikiMultiHopQA.

From the GSM8K training set, we use all 7473
examples. From the 2WikiMultiHopQA dataset,
we sample 1,000 examples from each of the 4 data
types: inference, comparison, bridge_comparison,
and compositional.

A.1 Solve, Summarize, Scatter

Solve In this step, we simply induce step-by-step
reasoning process, using standard zero-shot chain-
of-thought prompting.

Summarize In this step, we generate a summary
of the reasoning process from solve. We impose the
following constraints on the resulting summary:

• The summary must contain all essential infor-
mation from the reasoning process.

• The summary must follow the same logical
progression as the reasoning process.

• The summary must not repeat information pro-
vided in the question.

• The summary must be speech-friendly and
free of complex sentences or hard-to-read
words.

Because enforcing all constraints simultaneously
in a single instruction yields suboptimal results,
we adopt a progressive approach, providing the
language model with one constraint at a time.

Scatter In this step, we distribute the summary
throughout the reasoning process, placing each
summary segment immediately after its correspond-
ing reasoning segment. To encourage fine-grained
control over the placement of summary segments,
we manually label 16 samples and use them as
few-shot examples.

B Details of Experimental Setup

B.1 Prompts

This section outlines the specific prompts used in
our experiments, including those for baseline meth-
ods and our proposed verbalizer. For the chain-of-
thought (CoT) reasoning experiments, we adopt
the system prompt illustrated in Figure 4. In the

case of speech-friendly prompting and finetuning,
we follow the instruction template shown in Fig-
ure 6. Our proposed verbalizer (both the SEQ and
REVERT) uses the prompt presented in Figure 5.
For experiments involving Qwen2.5-Omni-7B, we
employ the default system prompt provided by the
model.

Chain-of-Thought Prompting (CoT)

You are a helpful assistant that provides
a step-by-step reasoning process before
arriving at the final answer.

Figure 4: A system prompt designed for chain-of-
thought (CoT) prompting.

Speech-Friendly Prompting (SFP)

You are a voice assistant that responds in a
way that is easy to understand when spoken
aloud. Your responses should be concise,
clear, and listener-friendly. Avoid using
equations, LaTeX, or complex symbols that
are hard to pronounce or understand in
speech.

Figure 5: A system prompt designed for speech-friendly
prompting (SFP) or finetuning (SFF).

REVERT

Your task is to provide step-by-step
reasoning with incremental,
speech-friendly summaries. You will
be given a question and must reason
through it step by step. Each time you
generate the token <bov>, provide a clear
and concise summary of the reasoning so
far, suitable for spoken delivery. Do
not include equations, LaTeX, or complex
symbols in these summaries. Conclude each
summary with the token <eov>. Ensure each
summary connects naturally to the one
before it.

Figure 6: A system prompt designed for our verbalizer.

B.2 Details of Training

We finetune our verbalization model for SEQ and
REVERT model using Qwen2.5-3B-Instruct with
full-parameter optimization. All models are trained
for one epoch with 4 A6000GPU, totaling 1.3k
steps (within 1 hour) with a batch size of 8. For op-
timization, we employ the AdamW optimizer with
a learning rate of 2× 10−5, a cosine learning rate



Prompts for Data Construction

Solve Provide a step-by-step reasoning process before arriving at the final answer.

Summarize Write a clear, concise, and speech-friendly summary of the provided analysis. Ensure the summary flows naturally when read aloud, avoiding
complex sentences, mathematical equations or awkward phrasing. Follow the analysis’s logical progression, presenting key points in the same
order and context. Include only essential steps, omitting unnecessary details, boilerplate text, or repetitions. The general tone of the summary
must match that of the original analysis. The summary must be appropriate as the response to the original question. Do not apply LaTeX or
markdown formatting in your summary.

First, extract the essential information from the analysis.

Now, make sure the logical progression of the summary matches the order of the analysis, without adding or removing information.

Now, remove all parts that are repeating the information from the original question.

Now, make sure the content is speech-friendly be breaking up complex sentences and avoiding long and hard-to-read words.

Scatter Combine an analysis with its corresponding summary by interleaving summary segments with relevant analysis portions.

Ensure the summary segments immediately follow the equivalent content within the analysis and are enclosed with ‘<bov>‘ and
‘<eov>‘ tags.

# Steps

1. **Receive analysis and summary**: Identify sections in both the analysis and the summary.
2. **Match content segments**: Pair each summary segment with the corresponding analysis segment to ensure logical flow.
3. **Interleave content**: Insert summary segments after the matching sections of the analysis, surrounded by ‘<bov>‘ and ‘<eov>‘ tags.

# Output Format

The output should maintain the structure of the analysis, with summary segments appropriately interleaved. Each summary segment
must be enclosed in ‘<bov>‘ and ‘<eov>‘ tags immediately after the equivalent analysis content.

# Notes

- Maintain the logical sequence of both the analysis and summary.
- Ensure clarity in how summary elements align with the analysis.
- Avoid rephrasing the given segments; use them verbatim for consistency and accuracy.
- The summary and analysis must not change from the original text.

Table 5: Prompts designed for data construction.

scheduler, and a warmup ratio of 0.1. The optimizer
parameters are set to β1 = 0.9, β2 = 0.999, and a
weight decay of 0.1. For speech-friendly finetun-
ing (SFF), we finetune Qwen2.5-7B-Instruct and
Llama-3.1-8B-Instruct using LoRA with r = 16
and α = 16. and other training configurations are
kept identical to those described above.

B.3 Inference
We use top-p sampling with a temperature of 0.1
and a nucleus probability p = 0.95 for all response
generation for inference. For the REVERT model,
we employ greedy decoding for next-token predic-
tion to determine whether to initiate verbalization
(i.e., generate the ⟨bov⟩ or ⟨con⟩ token). Upon re-
ceiving the final reasoning segment, the verbalizer
is manually appended with the ⟨bov⟩ token rather
than relying on sampling.

B.4 LLM-based answer verification
We utilize an LLM-based answer verification
method to overcome the limitations of rule-based
evaluation. In the context of speech-friendly re-
sponses, model outputs are expected to be clear and
easily understandable, but they often deviate from
structured formats and may normalize numerical

answers (e.g., $ 25 → twenty-five dollars). These
characteristics make exact matching and rule-based
answer extraction unreliable.

Therefore, we use gpt-4.1-mini-2025-04-11 to
automatically assess answer correctness. As illus-
trated in Figure 7, the verifier is prompted with
the question, a model-generated response, and the
corresponding ground-truth answer.

C Details of Human Evaluation

In this section, we provide comprehensive details
regarding our human evaluation protocol.

C.1 Datasets and Models.
We evaluate 60 examples, with a random sample of
20 from the three target datasets: GSM8K, 2Wiki-
MultiHopQA, and SciBench. Each example is eval-
uated independently by multiple annotators. We
use the Qwen2.5-7B-Instruct model as the thinking
LLM across all evaluated systems, including CoT,
SFP, SFF, Qwen2.5-Omni-7B for THINK-SPEAK

baselines, and our proposed approaches.

C.2 Evaluation Criteria.
Each output is evaluated along four key dimensions.
We provided annotators with the following, more



Answer Verification Prompt

[SYSTEM]
Given a ground-truth answer and a submitted answer, tell me if the submitted answer is correct.
Disregard any units, formatting, etc. In your explanation, first extract the final answer of
the submitted answer and then compare it with the ground truth.

You must only use the ground truth answer to determine the correctness of the submitted
answer. The validity of the ground truth answer must not be questioned. Note that the submitted
answer must directly and explicitly answer the question. Any implicit answering should be
considered incorrect.

[USER]
Question:
{question}

Ground-Truth Answer:
{ground_truth}

Submitted Answer:
{submitted_answer}

Figure 7: A prompt designed for LLM-based answer verification.

detailed definitions for each factor, which offer
additional guidance beyond the brief descriptions
in Table 1.

• Naturalness: measures whether the response
sounds like something a real person would say
in a conversation. This is NOT a measure of
acoustic quality—focus on the wording and
phrasing, not the voice.

• Conciseness: measures whether the response
gets to the point without including unnec-
essary or excessive information. Focus on
whether the response is brief and relevant, or if
it feels too long or contains details that aren’t
needed.

• Understandability: measures how clearly the
response communicates its meaning. Focus
on whether you can easily grasp what the re-
sponse is trying to say, without getting lost or
confused by the way the information is pre-
sented.

• Overall Quality: measures your general im-
pression of the response, taking into account
all aspects such as clarity, naturalness, and
conciseness. Focus on how well the response
works as a whole.

Annotation Procedure. We recruited annotators
via Amazon Mechanical Turk (MTurk). For each
data point, we collected ratings from three indepen-
dent workers to mitigate subjectivity. Annotators
were instructed as follows:

• Carefully read the question and listen to the
speech-based response before rating.

• Rate each evaluation criterion on a 1–5 Likert
scale, where 1 represents the lowest and 5 the
highest quality.

• For each criterion, provide a brief explanation
to justify the assigned score.

Compensation was set at 0.5$ per example for
GSM8K and 2WikiMultiHopQA, and 0.7$ per ex-
ample for SciBench, reflecting the varying com-
plexity and required annotation effort. Explana-
tions were manually reviewed to filter out low-
effort or inconsistent responses.

D Further Analysis

In this section, we present additional analyses
of our experimental results to complement the
main findings discussed in the paper. We provide
qualitative examples for each dataset and method,
along with detailed dataset-wise results of speech-
suitability scores and human evaluation outcomes.

D.1 Qualitative Results

To provide deeper insight into our framework
THINK-VERBALIZE-SPEAK and the REVERT
model, we present representative qualitative ex-
amples from each evaluation dataset. All exam-
ples use Qwen2.5-7B-Instruct as the reasoning
model. Specifically, Table 7 presents results on



WC(↓) FRE(↑) DD(↓) NV(↓)

Models 2MHQA GSM8K SciBench 2MHQA GSM8K SciBench 2MHQA GSM8K SciBench 2MHQA GSM8K SciBench

Qwen2.5-Omni-7B 49.0 101.7 138.1 74.8 90.9 72.6 5.51 5.24 5.95 0.004 0.78 30.8

Qwen2.5-7B-Instruct

CoT 149.4 194.5 436.0 51.0 69.9 61.6 6.51 6.42 7.18 3.737 9.079 327.2
SFP 53.2 101.7 326.5 59.2 88.0 68.9 6.44 5.33 6.22 0.449 2.887 122.6
SFF 40.6 48.0 80.8 70.8 88.4 75.8 4.48 4.25 5.13 0.011 0.034 5.6

TVS (SEQ) 46.6 43.9 90.0 71.7 88.7 74.7 4.80 4.27 5.49 0.021 0.026 5.7
TVS (REVERT) 30.5 44.9 78.1 69.5 88.9 74.6 4.79 4.20 5.37 0.075 0.043 3.2

Llama-3.1-8B-Instruct

CoT 145.6 153.4 296.2 58.4 69.2 61.8 5.85 6.23 7.08 14.604 67.109 384.7
SFP 27.9 87.1 212.4 61.8 85.0 68.4 5.70 5.45 6.69 0.155 11.043 243.0
SFF 39.9 44.9 84.6 71.7 88.3 75.0 4.48 4.28 5.29 0.015 0.035 12.5

TVS (SEQ) 45.9 42.1 79.3 70.9 88.7 72.9 4.62 4.23 5.52 0.019 0.005 4.8
TVS (REVERT) 41.6 44.0 76.9 71.1 88.4 72.8 4.55 4.21 5.43 0.173 0.024 1.9

gpt-4o-mini-2024-07-18

CoT 104.6 175.4 291.0 53.8 67.4 63.5 5.85 6.37 6.55 11.463 74.687 352.6
SFP 20.4 73.1 213.8 58.4 82.5 57.3 5.79 5.14 6.37 0.011 0.215 54.0

TVS (SEQ) 43.1 43.8 79.4 69.7 88.5 72.8 4.63 4.27 5.52 0.014 0.008 6.4
TVS (REVERT) 32.2 45.9 74.8 70.6 88.4 73.1 4.63 4.25 5.52 0.041 0.019 2.3

Table 6: Additional speech-suitability scores across all three datasets, comparing various approaches: chain-
of-thought (CoT), speech-friendly prompting (SFP), finetuning (SFF), Qwen2.5-Omni-7B, and our proposed
methods (TVS+SEQ, TVS+REVERT). Results show consistent trends across all datasets. As we move from
2WikiMultiHopQA (denoted as 2MHQA) to GSM8K and then SciBench, the tasks increasingly demand stronger
reasoning capabilities. Correspondingly, the length of test-time reasoning grows and overall speech-suitability
decreases.

GSM8K, Table 8 on 2WikiMultiHopQA, and Ta-
bles 9 and 10 on SciBench. These examples high-
light the strengths and limitations of various ap-
proaches in terms of both reasoning capability and
speech-friendliness. Our framework demonstrates
balanced performance, producing outputs that are
logically sound and well-suited for verbal commu-
nication.

D.2 Speech-suitability Scores

We provide additional speech-suitability scores
for the remaining datasets in Table 6. Consistent
patterns are observed across datasets: models ex-
plicitly guided to generate speech-friendly outputs
(SFP, SFF, Qwen2.5-Omni-7B) tend to produce
less verbose responses (WC↓), exhibit improved
readability (FRE↑), and reduce the use of non-vocal
elements (NV↓), such as LaTeX expressions and
equations, relative to standard chain-of-thought
generations.

Nevertheless, we find that applying the speech-
friendly prompt (Figure 6) to standard text-based
language models does not consistently yield out-
puts suitable for spoken delivery. This limitation is
particularly pronounced in SciBench, where tasks
involve complex reasoning and numerical compu-
tation. In such cases, models often fail to con-

form to the intended spoken style, suggesting that
prompt-based approaches alone may be insufficient
for speech adaptation in highly technical domains.



Sample text responses for various methods on GSM8K

Question Each class in a school has 20 students. There are 3 classes. The school as a whole is 50%
boys and 50% girls. The first class has 15 girls. The second class has 12 girls. How many
boys are in the third class?

Answer 17

Chain-of-Thought To determine the number of boys in the third class, we need to follow these steps:
1. Calculate the total number of students in the school:
- Each class has 20 students.
- There are 3 classes.

Total number of students = 20× 3 = 60

2. Determine the number of boys and girls in the school:
- The school is 50% boys and 50% girls.

Number of boys =
50

100
× 60 = 30

Number of girls =
50

100
× 60 = 30

3. Find the number of girls in the first and second classes:
- The first class has 15 girls.
- The second class has 12 girls.
4. Calculate the total number of girls in the first two classes:

Total number of girls in first and second classes = 15 + 12 = 27

5. Determine the number of girls in the third class:
- Total number of girls in the school is 30.

Number of girls in the third class = 30− 27 = 3

6. Calculate the number of boys in the third class:
- Each class has 20 students.
- The third class has 3 girls.

Number of boys in the third class = 20− 3 = 17

Thus, the number of boys in the third class is 17 .

Speech-Friendly Prompting In each class, there are 20 students. Since the school is 50% boys and 50% girls, each class
also has 10 boys and 10 girls. The first class has 15 girls, which means it has 5 boys (since
it’s supposed to have 10 girls, but there are 15, so 20 - 15 = 5 boys). The second class has 12
girls, which means it has 8 boys (since it’s supposed to have 10 girls, but there are 12, so 20 -
12 = 8 boys). So far, we have:
- First class: 5 boys - Second class: 8 boys
That’s a total of 13 boys in the first two classes. Since each class is supposed to have 10 boys,
the third class must have 7 boys (because 10 - 3 = 7, where 3 is the number of boys already
counted in the first two classes). So, there are 7 boys in the third class.

Speech-Friendly Finetuning The first class has 15 girls, so it has 5 boys. The second class has 12 girls, which means it has
8 boys. Together, these two classes have 23 boys. Since each class has 20 students, there are
60 boys in total. That means the third class must have 37 boys.

TVS (SEQ) The school has 30 boys and 30 girls. The first class has 15 girls. The second class has 12
girls. Together, they have 27 girls. That means the third class has 3 girls. Since each class has
20 students, the third class has 17 boys. So, there are 17 boys in the third class.

TVS (REVERT) There are 60 students in total. The school is half boys and half girls. That means there are 30
boys. The first class has 15 girls. The second class has 12 girls. Together, they have 27 girls.
If we take 27 away from 30, we get 3 girls in the third class. Since each class has 20 students,
the third class has 17 boys.

Table 7: Sample generation results for various methods on GSM8K. Our models, TVS (SEQ) and TVS (REVERT),
consistently produce accurate answers with logically sound, step-by-step reasoning, while maintaining high speech-
suitableness. In contrast, speech-friendly baseline methods frequently generate answers that are not only incorrect
but also logically flawed.



Sample text responses for various methods on 2WikiMultiHopQA

Question Which country John Of Bohemia’s mother is from?

Answer Germany

Chain-of-Thought To determine which country John of Bohemia’s mother is from, we need to follow these steps:
1. Identify John of Bohemia: John of Bohemia was a Bohemian nobleman and king who
reigned as King of Bohemia from 1347 to 1349.
2. Research his family background: John of Bohemia was born in Prague, Bohemia (now
part of the Czech Republic) in 1319. His father was Wenceslaus II, Holy Roman Emperor,
and his mother was Elisabeth of Bavaria.
3. Determine Elisabeth of Bavaria’s origin: Elisabeth of Bavaria was born in 1294 in
Landshut, Bavaria, which is now part of Germany. She was a member of the House of
Wittelsbach.
Given this information, we can conclude that John of Bohemia’s mother, Elisabeth of Bavaria,
is from Bavaria, which is a region in modern-day Germany.
Therefore, the country John of Bohemia’s mother is from is Germany.

Speech-Friendly Prompting John of Bohemia’s mother was from France. Specifically, she was from the region of
Champagne.

Speech-Friendly Finetuning John of Bohemia was a king of Bohemia. His mother was Margaret of Durazzo. She was
the daughter of Stephen Dušan, who ruled Serbia. So, John of Bohemia’s mother was from
Serbia.

TVS (SEQ) John of Bohemia was a Bohemian nobleman and king. His mother was Elisabeth of Bavaria.
She was born in Landshut, Bavaria. That area is now part of Germany. So, John of Bohemia’s
mother is from Germany.

TVS (REVERT) John of Bohemia was a Bohemian nobleman and king. He was born in Prague and had a
Bavarian mother named Elisabeth. Elisabeth was born in Landshut, Bavaria. So, John of
Bohemia’s mother is from Germany.

Table 8: Sample generation results for various methods on 2WikiMultiHopQA. Compared to baselines, both
TVS (SEQ) and TVS (REVERT) deliver more accurate reasoning and maintain higher speech-suitableness in their
responses. While baseline methods frequently produce incorrect answers or include irrelevant information, our
models consistently provide factually correct and well-structured explanations that are both clear and suitable
for spoken delivery. This highlights the effectiveness of our approach in balancing reasoning capability with
speech-oriented generation quality.



Sample text responses for various methods on SciBench (1)

Question Let X and Y be independent with distributions N(5, 16) and N(6, 9), respectively. Evaluate P (X >
Y ) = P (X − Y > 0).

Answer 0.4207

Chain-of-Thought To evaluate P (X > Y ), we need to find the probability that X − Y > 0. Given that X and Y are
independent normal random variables, we can determine the distribution of X − Y .
### Step 1: Determine the Distribution of X − Y
Since X ∼ N(5, 16) and Y ∼ N(6, 9):
- The mean of X is µX = 5.
- The variance of X is σ2

X = 16, so the standard deviation is σX = 4.
- The mean of Y is µY = 6.
- The variance of Y is σ2

Y = 9, so the standard deviation is σY = 3.
For the difference X − Y :
- The mean of X − Y is:

µX−Y = µX − µY = 5− 6 = −1

- The variance of X − Y is:

σ2
X−Y = σ2

X + σ2
Y = 16 + 9 = 25

Therefore, the standard deviation of X − Y is:

σX−Y =
√
25 = 5

Thus, X − Y ∼ N(−1, 25).
### Step 2: Standardize X − Y
We need to find P (X − Y > 0). To do this, we standardize X − Y :

Z =
(X − Y )− µX−Y

σX−Y
=

(X − Y )− (−1)
5

=
X − Y + 1

5

We want to find:

P (X − Y > 0) = P

(
X − Y + 1

5
>

0 + 1

5

)
= P

(
Z >

1

5

)
### Step 3: Use the Standard Normal Distribution
The variable Z follows a standard normal distribution N(0, 1). We need to find P (Z > 0.2).
Using standard normal distribution tables or a calculator, we find:

P (Z > 0.2) = 1− P (Z ≤ 0.2)

From standard normal tables, P (Z ≤ 0.2) ≈ 0.5793.
Therefore:

P (Z > 0.2) = 1− 0.5793 = 0.4207

### Final Answer

P (X > Y ) = P (X − Y > 0) = 0.4207

Table 9: Step-by-step reasoning output from the Chain-of-Thought baseline on SciBench. This example illustrates a
correct and complete logical progression, resulting in the correct numerical answer.



Sample text responses for various methods on SciBench (2)

Question Let X and Y be independent with distributions N(5, 16) and N(6, 9), respectively. Evaluate
P (X > Y ) = P (X − Y > 0).

Answer 0.4207

Speech-Friendly Prompting To find P (X > Y ), we need to look at the distribution of X − Y . Since X and Y are
independent, the difference X − Y will also follow a normal distribution.
First, let’s determine the mean and variance of X − Y :
- The mean of X is 5, and the mean of Y is 6. So, the mean of X − Y is:

µX−Y = µX − µY = 5− 6 = −1

- The variance of X is 16, and the variance of Y is 9. Since X and Y are independent, the
variance of X − Y is:

σ2
X−Y = σ2

X + σ2
Y = 16 + 9 = 25

Therefore, the standard deviation of X − Y is:

σX−Y =
√
25 = 5

So, X − Y follows a normal distribution N(−1, 25).
Now, we want to find P (X − Y > 0). This is equivalent to finding the probability that a
normally distributed random variable with mean −1 and standard deviation 5 is greater than
0.
We can standardize this by converting it to a standard normal distribution:

Z =
(X − Y )− (−1)

5
=

X − Y + 1

5

We need to find P (Z > 0+1
5

) = P (Z > 0.2).
Using standard normal tables or a calculator, we find that:

P (Z > 0.2) ≈ 0.4207

Therefore, P (X > Y ) = P (X − Y > 0) ≈ 0.4207.

Speech-Friendly Finetuning The difference between X and Y, X minus Y, follows a normal distribution. Its mean is 5
minus 6, which is negative 1. Its variance is the sum of the variances of X and Y, so it’s 25.
To find P(X greater than Y), we look at P(X minus Y greater than 0). This is the same as
finding the probability that a standard normal variable is greater than 1 divided by 5. That
value is about 0.3085. So, P(X greater than Y) is approximately 0.3085.

TVS (SEQ) The difference between X and Y is X minus Y. The mean of X minus Y is negative one. The
variance is 25, so the standard deviation is five. To find P(X minus Y > 0), we standardize X
minus Y. This gives us Z equals (X minus Y plus one) divided by five. We want to find P(Z >
0.2). Since Z is a standard normal variable, we use the standard normal distribution. From the
table, P(Z > 0.2) is about 0.4207. So, P(X > Y) is 0.4207.

TVS (REVERT) The mean of X minus Y is 5 minus 6, which is -1. The variance is the sum of the variances,
16 plus 9, which equals 25. The standard deviation is the square root of 25, which is 5. To
find P(X minus Y is greater than 0), we standardize X minus Y. This gives us a standard
normal distribution with mean 0 and standard deviation 5. We want to find the probability
that this standard normal is greater than 0.2. Using the standard normal distribution, we find
that P(X minus Y is greater than 0) is about 0.42.

Table 10: Sample generation results from various methods on SciBench. Our models, TVS (SEQ) and TVS
(REVERT), consistently produce accurate answers with logically sound and precise numerical reasoning, while
maintaining clarity and suitability for spoken delivery. In contrast, baseline methods frequently exhibit logical errors
or numerical calculation mistakes. Interestingly, even when prompted for concise and speech-friendly responses,
the models tend to generate still structured and verbose outputs on SciBench, due to the inherent complexity of
scientific questions.
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